前言
本篇文章是阅读了高畅《LeetCode 101:和你一起你轻松刷题(C++)》之后所总结归纳的,亦借鉴了原作者的解析。
贪心算法
顾名思义,贪心算法或贪心思想采用贪心的策略,保证每次操作都是局部最优的,从而使最后得到的结果是全局最优的。
举一个最简单的例子:小明和小王喜欢吃苹果,小明可以吃五个,小王可以吃三个。已知苹果园里有吃不完的苹果,求小明和小王一共最多吃多少个苹果。在这个例子中,我们可以选用的贪心策略为,每个人吃自己能吃的最多数量的苹果,这在每个人身上都是局部最优的。又因为全局结果是局部结果的简单求和,且局部结果互不相干,因此局部最优的策略也同样是全局最优的策略。
分配问题
LeetCode NO.455 分发饼干(简单)
题目描述
假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。
对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。
示例 1:
输入: g = [1,2,3], s = [1,1]
输出: 1
解释:
你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。
虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。
所以你应该输出1。
示例 2:
输入: g = [1,2], s = [1,2,3]
输出: 2
解释:
你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。
你拥有的饼干数量和尺寸都足以让所有孩子满足。
所以你应该输出2.
题解
因为饥饿度最小的孩子最容易吃饱,所以我们先考虑这个孩子。为了尽量使得剩下的饼干可以满足饥饿度更大的孩子,所以我们应该把大于等于这个孩子饥饿度的、且大小最小的饼干给这个孩子。满足了这个孩子之后,我们采取同样的策略,考虑剩下孩子里饥饿度最小的孩子,直到没有满足条件的饼干存在。
简而言之,这里的贪心策略是,给剩余孩子里最小饥饿度的孩子分配最小的能饱腹的饼干。至于具体实现,因为我们需要获得大小关系,一个便捷的方法就是把孩子和饼干分别排序。这样我们就可以从饥饿度最小的孩子和大小最小的饼干出发,计算有多少个对子可以满足条件。
1 | int findContentChildren(vector<int>& g, vector<int>& s) { |
LeetCode NO.135 分发糖果(困难)
题目描述
老师想给孩子们分发糖果,有 N 个孩子站成了一条直线,老师会根据每个孩子的表现,预先给他们评分。
你需要按照以下要求,帮助老师给这些孩子分发糖果:
每个孩子至少分配到 1 个糖果。
评分更高的孩子必须比他两侧的邻位孩子获得更多的糖果。
那么这样下来,老师至少需要准备多少颗糖果呢?
示例 1:
输入:[1,0,2]
输出:5
解释:你可以分别给这三个孩子分发 2、1、2 颗糖果。
示例 2:
输入:[1,2,2]
输出:4
解释:你可以分别给这三个孩子分发 1、2、1 颗糖果。
第三个孩子只得到 1 颗糖果,这已满足上述两个条件。
题解
我们只需要简单的两次遍历即可:把所有孩子的糖果数初始化为1;先从左往右遍历一遍,如果右边孩子的评分比左边的高,则右边孩子的糖果数更新为左边孩子的糖果数加1;再从右往左遍历一遍,如果左边孩子的评分比右边的高,且左边孩子当前的糖果数不大于右边孩子的糖果数,则左边孩子的糖果数更新为右边孩子的糖果数加1。通过这两次遍历,分配的糖果就可以满足题目要求了。这里的贪心策略即为,在每次遍历中,只考虑并更新相邻一侧的大小关系。
1 | int candy(vector<int>& ratings) { |
区间问题
LeetCode NO.435 无重叠区间(中等)
题目描述
给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠。
注意:
可以认为区间的终点总是大于它的起点。
区间 [1,2] 和 [2,3] 的边界相互“接触”,但没有相互重叠。
示例 1:
输入: [ [1,2], [2,3], [3,4], [1,3] ]
输出: 1
解释: 移除 [1,3] 后,剩下的区间没有重叠。
示例 2:
输入: [ [1,2], [1,2], [1,2] ]
输出: 2
解释: 你需要移除两个 [1,2] 来使剩下的区间没有重叠。
示例 3:
输入: [ [1,2], [2,3] ]
输出: 0
解释: 你不需要移除任何区间,因为它们已经是无重叠的了。
题解
在选择要保留区间时,区间的结尾十分重要:选择的区间结尾越小,余留给其它区间的空间就越大,就越能保留更多的区间。因此,我们采取的贪心策略为,优先保留结尾小且不相交的区间。
具体实现方法为,先把区间按照结尾的大小进行增序排序,每次选择结尾最小且和前一个选择的区间不重叠的区间。我们这里使用C++ 的Lambda,结合std::sort() 函数进行自定义排序。
在样例中,排序后的数组为[[1,2], [1,3], [2,4]]。按照我们的贪心策略,首先初始化为区间[1,2];由于[1,3] 与[1,2] 相交,我们跳过该区间;由于[2,4] 与[1,2] 不相交,我们将其保留。因此最终保留的区间为[[1,2], [2,4]]。
1
2
3
4
5
6
7
8
9
10
int eraseOverlapIntervals(vector<vector<int>>& intervals) {
if(intervals.empty()) return 0;
sort(intervals.begin(),intervals.end(),[](vector<int> avector<int> b){return a[1]<b[1];});
int res = 0,prev = intervals[0][1];
for(int i = 1;i<intervals.size();i++){
if(intervals[i][0]<prev) res++;
else prev = intervals[i][1];
}
return res;
}
1 | int eraseOverlapIntervals(vector<vector<int>>& intervals) { |
练习
LeetCode NO.605 种花问题(简单)
1 | /*将给定的数组分成三段:第一个1之前,最后一个1之后,以及两者之间。 |
LeetCode NO.452 用最少数量的箭引爆气球(中等)
1 | /* 和NO.435思路类似,按区间右端点升序排列,维护axis作为当前这支箭射出的位置,显然,初始时axis应该在第一个区间的右端点位置(贪心思想)。 |
LeetCode NO.763 划分字母区间(中等)
1 | /*遍历一遍数组,记录每个字母出现的最远位置。 |
LeetCode NO.122 买卖股票的最佳时机 II(简单)
1 | int maxProfit(vector<int>& prices) { |
LeetCode NO.406 根据身高重建队列(中等)
1 | /*按照hi升序,ki降序排列队列。 |
LeetCode NO.665 非递减数列(简单)
1 | /* |